Train, test, split pandas DataFrame

import numpy as np
import pandas as pd
# Get data
df_wine = pd.read_csv('https://archive.ics.uci.edu/'
                      'ml/machine-learning-databases/wine/wine.data',
                      header=None)
# Rename columns
df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash',
                   'Alcalinity of ash', 'Magnesium', 'Total phenols',
                   'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins',
                   'Color intensity', 'Hue', 'OD280/OD315 of diluted wines',
                   'Proline']
# Class labels
print('Class labels', np.unique(df_wine['Class label']))
df_wine.head()
Class labels [1 2 3]
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

# train, test, split
from sklearn.model_selection import train_test_split

X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values

X_train, X_test, y_train, y_test =\
    train_test_split(X, y, 
                     test_size=0.3, 
                     random_state=0, 
                     stratify=y)