Non-linear SVM kernels
Solving non-linear problems using a kernel SVM
Kernel methods create nonlinear combinations of the original features to project them into a higher-dimensional space via a mapping $\phi$ where it becomes linearly seperable.
Kernel function: $\kappa \left( x^{(i)}, x^{(j)} \right) = \phi\left(x^{(i)}\right)^{T} \phi\left(x^{(j)}\right) $
One of the most widely used kernels is the Gaussian kernel: $\kappa \left( x^{(i)}, x^{(j)} \right) = exp\left( -\gamma || x^{(i)} - x^{(j)} ||^2 \right)$
Kernel can be interpretted as a similarity measure: 1 if similar, 0 if very dissimilar.
Important parameters to vary:
- C is inversely proportional to the size of the boundary
- $\gamma$ Cut-off parameter for the gaussian sphere, higher value means tighter and bumpier boundary
from sklearn.svm import SVC
svm = SVC(kernel='rbf', random_state=1, gamma=0.10, C=10.0)
Basic pipeline
Collect data
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(1)
X_xor = np.random.randn(200, 2)
y_xor = np.logical_xor(X_xor[:, 0] > 0,
X_xor[:, 1] > 0)
y_xor = np.where(y_xor, 1, -1)
plt.scatter(X_xor[y_xor == 1, 0],
X_xor[y_xor == 1, 1],
c='b', marker='x',
label='1')
plt.scatter(X_xor[y_xor == -1, 0],
X_xor[y_xor == -1, 1],
c='r',
marker='s',
label='-1')
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.legend(loc='best')
plt.tight_layout()
plt.show()
Train an algorithm
svm = SVC(kernel='rbf', random_state=1, gamma=0.10, C=10.0)
svm.fit(X_xor, y_xor)
SVC(C=10.0, gamma=0.1, random_state=1)
Visualize decision boundaries
import matplotlib.pyplot as plt
from helper.plotter import plot_decision_regions
plot_decision_regions(X_xor, y_xor,
classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()