MLP API
import numpy as np
import sys
class NeuralNetMLP(object):
""" Feedforward neural network / Multi-layer perceptron classifier.
Parameters
------------
n_hidden : int (default: 30)
Number of hidden units.
l2 : float (default: 0.)
Lambda value for L2-regularization.
No regularization if l2=0. (default)
epochs : int (default: 100)
Number of passes over the training set.
eta : float (default: 0.001)
Learning rate.
shuffle : bool (default: True)
Shuffles training data every epoch if True to prevent circles.
minibatch_size : int (default: 1)
Number of training examples per minibatch.
seed : int (default: None)
Random seed for initializing weights and shuffling.
Attributes
-----------
eval_ : dict
Dictionary collecting the cost, training accuracy,
and validation accuracy for each epoch during training.
"""
def __init__(self, n_hidden=30,
l2=0., epochs=100, eta=0.001,
shuffle=True, minibatch_size=1, seed=None):
self.random = np.random.RandomState(seed)
self.n_hidden = n_hidden
self.l2 = l2
self.epochs = epochs
self.eta = eta
self.shuffle = shuffle
self.minibatch_size = minibatch_size
def _onehot(self, y, n_classes):
"""Encode labels into one-hot representation
Parameters
------------
y : array, shape = [n_examples]
Target values.
n_classes : int
Number of classes
Returns
-----------
onehot : array, shape = (n_examples, n_labels)
"""
onehot = np.zeros((n_classes, y.shape[0]))
for idx, val in enumerate(y.astype(int)):
onehot[val, idx] = 1.
return onehot.T
def _sigmoid(self, z):
"""Compute logistic function (sigmoid)"""
return 1. / (1. + np.exp(-np.clip(z, -250, 250)))
def _forward(self, X):
"""Compute forward propagation step"""
# step 1: net input of hidden layer
# [n_examples, n_features] dot [n_features, n_hidden]
# -> [n_examples, n_hidden]
z_h = np.dot(X, self.w_h) + self.b_h
# step 2: activation of hidden layer
a_h = self._sigmoid(z_h)
# step 3: net input of output layer
# [n_examples, n_hidden] dot [n_hidden, n_classlabels]
# -> [n_examples, n_classlabels]
z_out = np.dot(a_h, self.w_out) + self.b_out
# step 4: activation output layer
a_out = self._sigmoid(z_out)
return z_h, a_h, z_out, a_out
def _compute_cost(self, y_enc, output):
"""Compute cost function.
Parameters
----------
y_enc : array, shape = (n_examples, n_labels)
one-hot encoded class labels.
output : array, shape = [n_examples, n_output_units]
Activation of the output layer (forward propagation)
Returns
---------
cost : float
Regularized cost
"""
L2_term = (self.l2 *
(np.sum(self.w_h ** 2.) +
np.sum(self.w_out ** 2.)))
term1 = -y_enc * (np.log(output))
term2 = (1. - y_enc) * np.log(1. - output)
cost = np.sum(term1 - term2) + L2_term
# If you are applying this cost function to other
# datasets where activation
# values maybe become more extreme (closer to zero or 1)
# you may encounter "ZeroDivisionError"s due to numerical
# instabilities in Python & NumPy for the current implementation.
# I.e., the code tries to evaluate log(0), which is undefined.
# To address this issue, you could add a small constant to the
# activation values that are passed to the log function.
#
# For example:
#
# term1 = -y_enc * (np.log(output + 1e-5))
# term2 = (1. - y_enc) * np.log(1. - output + 1e-5)
return cost
def predict(self, X):
"""Predict class labels
Parameters
-----------
X : array, shape = [n_examples, n_features]
Input layer with original features.
Returns:
----------
y_pred : array, shape = [n_examples]
Predicted class labels.
"""
z_h, a_h, z_out, a_out = self._forward(X)
y_pred = np.argmax(z_out, axis=1)
return y_pred
def fit(self, X_train, y_train, X_valid, y_valid):
""" Learn weights from training data.
Parameters
-----------
X_train : array, shape = [n_examples, n_features]
Input layer with original features.
y_train : array, shape = [n_examples]
Target class labels.
X_valid : array, shape = [n_examples, n_features]
Sample features for validation during training
y_valid : array, shape = [n_examples]
Sample labels for validation during training
Returns:
----------
self
"""
n_output = np.unique(y_train).shape[0] # number of class labels
n_features = X_train.shape[1]
########################
# Weight initialization
########################
# weights for input -> hidden
self.b_h = np.zeros(self.n_hidden)
self.w_h = self.random.normal(loc=0.0, scale=0.1,
size=(n_features, self.n_hidden))
# weights for hidden -> output
self.b_out = np.zeros(n_output)
self.w_out = self.random.normal(loc=0.0, scale=0.1,
size=(self.n_hidden, n_output))
epoch_strlen = len(str(self.epochs)) # for progress formatting
self.eval_ = {'cost': [], 'train_acc': [], 'valid_acc': []}
y_train_enc = self._onehot(y_train, n_output)
# iterate over training epochs
for i in range(self.epochs):
# iterate over minibatches
indices = np.arange(X_train.shape[0])
if self.shuffle:
self.random.shuffle(indices)
for start_idx in range(0, indices.shape[0] - self.minibatch_size +
1, self.minibatch_size):
batch_idx = indices[start_idx:start_idx + self.minibatch_size]
# forward propagation
z_h, a_h, z_out, a_out = self._forward(X_train[batch_idx])
##################
# Backpropagation
##################
# [n_examples, n_classlabels]
delta_out = a_out - y_train_enc[batch_idx]
# [n_examples, n_hidden]
sigmoid_derivative_h = a_h * (1. - a_h)
# [n_examples, n_classlabels] dot [n_classlabels, n_hidden]
# -> [n_examples, n_hidden]
delta_h = (np.dot(delta_out, self.w_out.T) *
sigmoid_derivative_h)
# [n_features, n_examples] dot [n_examples, n_hidden]
# -> [n_features, n_hidden]
grad_w_h = np.dot(X_train[batch_idx].T, delta_h)
grad_b_h = np.sum(delta_h, axis=0)
# [n_hidden, n_examples] dot [n_examples, n_classlabels]
# -> [n_hidden, n_classlabels]
grad_w_out = np.dot(a_h.T, delta_out)
grad_b_out = np.sum(delta_out, axis=0)
# Regularization and weight updates
delta_w_h = (grad_w_h + self.l2*self.w_h)
delta_b_h = grad_b_h # bias is not regularized
self.w_h -= self.eta * delta_w_h
self.b_h -= self.eta * delta_b_h
delta_w_out = (grad_w_out + self.l2*self.w_out)
delta_b_out = grad_b_out # bias is not regularized
self.w_out -= self.eta * delta_w_out
self.b_out -= self.eta * delta_b_out
#############
# Evaluation
#############
# Evaluation after each epoch during training
z_h, a_h, z_out, a_out = self._forward(X_train)
cost = self._compute_cost(y_enc=y_train_enc,
output=a_out)
y_train_pred = self.predict(X_train)
y_valid_pred = self.predict(X_valid)
train_acc = ((np.sum(y_train == y_train_pred)).astype(np.float) /
X_train.shape[0])
valid_acc = ((np.sum(y_valid == y_valid_pred)).astype(np.float) /
X_valid.shape[0])
sys.stderr.write('\r%0*d/%d | Cost: %.2f '
'| Train/Valid Acc.: %.2f%%/%.2f%% ' %
(epoch_strlen, i+1, self.epochs, cost,
train_acc*100, valid_acc*100))
sys.stderr.flush()
self.eval_['cost'].append(cost)
self.eval_['train_acc'].append(train_acc)
self.eval_['valid_acc'].append(valid_acc)
return self
Get data
import sys
import gzip
import shutil
import os
if (sys.version_info > (3, 0)):
writemode = 'wb'
else:
writemode = 'w'
zipped_mnist = [os.path.join('/tmp/',f) for f in os.listdir('/tmp/') if f.endswith('ubyte.gz')]
for z in zipped_mnist:
with gzip.GzipFile(z, mode='rb') as decompressed, open(z[:-3], writemode) as outfile:
outfile.write(decompressed.read())
import os
import struct
import numpy as np
def load_mnist(path, kind='train'):
"""Load MNIST data from `path`"""
labels_path = os.path.join(path,
'%s-labels-idx1-ubyte' % kind)
images_path = os.path.join(path,
'%s-images-idx3-ubyte' % kind)
with open(labels_path, 'rb') as lbpath:
magic, n = struct.unpack('>II',
lbpath.read(8))
labels = np.fromfile(lbpath,
dtype=np.uint8)
with open(images_path, 'rb') as imgpath:
magic, num, rows, cols = struct.unpack(">IIII",
imgpath.read(16))
images = np.fromfile(imgpath,
dtype=np.uint8).reshape(len(labels), 784)
images = ((images / 255.) - .5) * 2
return images, labels
X_train, y_train = load_mnist('/tmp/', kind='train')
print('Rows: %d, columns: %d' % (X_train.shape[0], X_train.shape[1]))
X_test, y_test = load_mnist('/tmp/', kind='t10k')
print('Rows: %d, columns: %d' % (X_test.shape[0], X_test.shape[1]))
Rows: 60000, columns: 784
Rows: 10000, columns: 784
Train MLP
n_epochs = 75
nn = NeuralNetMLP(n_hidden=100,
l2=0.01,
epochs=n_epochs,
eta=0.0005,
minibatch_size=100,
shuffle=True,
seed=1)
nn.fit(X_train=X_train[:55000],
y_train=y_train[:55000],
X_valid=X_train[55000:],
y_valid=y_train[55000:])
75/75 | Cost: 9515.78 | Train/Valid Acc.: 97.94%/97.60%
<__main__.NeuralNetMLP at 0x112ea8850>
Plot cost and accuracy
import matplotlib.pyplot as plt
plt.plot(range(nn.epochs), nn.eval_['cost'])
plt.ylabel('Cost')
plt.xlabel('Epochs')
#plt.savefig('images/12_07.png', dpi=300)
plt.show()
plt.plot(range(nn.epochs), nn.eval_['train_acc'],
label='Training')
plt.plot(range(nn.epochs), nn.eval_['valid_acc'],
label='Validation', linestyle='--')
plt.ylabel('Accuracy')
plt.xlabel('Epochs')
plt.legend(loc='lower right')
#plt.savefig('images/12_08.png', dpi=300)
plt.show()
Determine test accuracy and plot some examples
y_test_pred = nn.predict(X_test)
acc = (np.sum(y_test == y_test_pred)
.astype(np.float) / X_test.shape[0])
print('Test accuracy: %.2f%%' % (acc * 100))
Test accuracy: 96.93%
miscl_img = X_test[y_test != y_test_pred][:25]
correct_lab = y_test[y_test != y_test_pred][:25]
miscl_lab = y_test_pred[y_test != y_test_pred][:25]
fig, ax = plt.subplots(nrows=5, ncols=5, sharex=True, sharey=True)
ax = ax.flatten()
for i in range(25):
img = miscl_img[i].reshape(28, 28)
ax[i].imshow(img, cmap='Greys', interpolation='nearest')
ax[i].set_title('%d) t: %d p: %d' % (i+1, correct_lab[i], miscl_lab[i]))
ax[0].set_xticks([])
ax[0].set_yticks([])
plt.tight_layout()
#plt.savefig('images/12_09.png', dpi=300)
plt.show()
Break MLP API for learning
def _onehot(y, n_classes):
onehot = np.zeros((n_classes, y.shape[0]))
for idx, val in enumerate(y.astype(int)):
onehot[val, idx] = 1.
return onehot.T
def _sigmoid(z):
"""Compute logistic function (sigmoid)"""
return 1. / (1. + np.exp(-np.clip(z, -250, 250)))
def _forward(X, w_h, b_h, w_out, b_out):
"""Compute forward propagation step"""
# step 1: net input of hidden layer
# [n_examples, n_features] dot [n_features, n_hidden]
# -> [n_examples, n_hidden]
z_h = np.dot(X, w_h) + b_h
# step 2: activation of hidden layer
a_h = _sigmoid(z_h)
# step 3: net input of output layer
# [n_examples, n_hidden] dot [n_hidden, n_classlabels]
# -> [n_examples, n_classlabels]
z_out = np.dot(a_h, w_out) + b_out
# step 4: activation output layer
a_out = _sigmoid(z_out)
return z_h, a_h, z_out, a_out
def _compute_cost(y_enc, output, l2, w_h, w_out):
"""Compute cost function.
Parameters
----------
y_enc : array, shape = (n_examples, n_labels)
one-hot encoded class labels.
output : array, shape = [n_examples, n_output_units]
Activation of the output layer (forward propagation)
Returns
---------
cost : float
Regularized cost
"""
L2_term = (l2 *
(np.sum(w_h ** 2.) +
np.sum(w_out ** 2.)))
term1 = -y_enc * (np.log(output))
term2 = (1. - y_enc) * np.log(1. - output)
cost = np.sum(term1 - term2) + L2_term
return cost
def predict(X, w_h, b_h, w_out, b_out):
"""Predict class labels
Parameters
-----------
X : array, shape = [n_examples, n_features]
Input layer with original features.
Returns:
----------
y_pred : array, shape = [n_examples]
Predicted class labels.
"""
z_h, a_h, z_out, a_out = _forward(X, w_h, b_h, w_out, b_out)
y_pred = np.argmax(z_out, axis=1)
return y_pred
def fit(X_train, y_train, X_valid, y_valid, epochs):
# Parameters
n_hidden = 30
# epochs = 10
shuffle = True
minibatch_size = 100
l2 = 0.01
eta=0.0005
print(f'X train shape: {X_train.shape}')
print(f'y train shape: {y_train.shape}')
print(f'X test shape: {X_valid.shape}')
print(f'y test shape: {y_valid.shape}')
n_output = np.unique(y_train).shape[0] # number of class labels
n_features = X_train.shape[1]
print(f'\nNumber of outputs: {n_output}')
print(f'Number of outputs: {n_features}')
# Weight initialization
random = np.random.RandomState(123)
# weights for input -> hidden
b_h = np.zeros(n_hidden)
w_h = random.normal(loc=0.0, scale=0.1, size=(n_features, n_hidden))
print(f'\nBias input -> hidden: {b_h.shape}')
print(f'Weights input -> hidden: {w_h.shape}')
# weights for hidden -> output
b_out = np.zeros(n_output)
w_out = random.normal(loc=0.0, scale=0.1, size=(n_hidden, n_output))
print(f'\nBias hidden -> output: {b_out.shape}')
print(f'Weights hidden -> output: {w_out.shape}')
epoch_strlen = len(str(epochs)) # for progress formatting
eval_ = {'cost': [], 'train_acc': [], 'valid_acc': []}
y_train_enc = _onehot(y_train, n_output)
print(f'\nY train: {y_train.shape}')
print(f'\nY train encoding: {y_train_enc.shape}')
# iterate over training epochs
for i in range(epochs):
# iterate over minibatches
indices = np.arange(X_train.shape[0])
if shuffle:
random.shuffle(indices)
for j, start_idx in enumerate(range(0, indices.shape[0] - minibatch_size + 1, minibatch_size)):
#print(f'start_idx={start_idx+minibatch_size}/{indices.shape[0]} -> {j+1}/{indices.shape[0]/minibatch_size}')
batch_idx = indices[start_idx:start_idx + minibatch_size]
##################
# forward propagation
##################
z_h, a_h, z_out, a_out = _forward(X_train[batch_idx], w_h, b_h, w_out, b_out)
##################
# Backpropagation
##################
# [n_examples, n_classlabels]
delta_out = a_out - y_train_enc[batch_idx]
# [n_examples, n_hidden]
sigmoid_derivative_h = a_h * (1. - a_h)
# [n_examples, n_classlabels] dot [n_classlabels, n_hidden]
# -> [n_examples, n_hidden]
delta_h = (np.dot(delta_out, w_out.T) * sigmoid_derivative_h)
# [n_features, n_examples] dot [n_examples, n_hidden]
# -> [n_features, n_hidden]
grad_w_h = np.dot(X_train[batch_idx].T, delta_h)
grad_b_h = np.sum(delta_h, axis=0)
# [n_hidden, n_examples] dot [n_examples, n_classlabels]
# -> [n_hidden, n_classlabels]
grad_w_out = np.dot(a_h.T, delta_out)
grad_b_out = np.sum(delta_out, axis=0)
# Regularization and weight updates
delta_w_h = (grad_w_h + l2*w_h)
delta_b_h = grad_b_h # bias is not regularized
w_h -= eta * delta_w_h
b_h -= eta * delta_b_h
delta_w_out = (grad_w_out + l2*w_out)
delta_b_out = grad_b_out # bias is not regularized
w_out -= eta * delta_w_out
b_out -= eta * delta_b_out
#############
# Evaluation
#############
# Evaluation after each epoch during training
z_h, a_h, z_out, a_out = _forward(X_train, w_h, b_h, w_out, b_out)
cost = _compute_cost(y_enc=y_train_enc, output=a_out, l2=l2, w_h=w_h, w_out=w_out)
y_train_pred = predict(X_train, w_h, b_h, w_out, b_out)
y_valid_pred = predict(X_valid, w_h, b_h, w_out, b_out)
train_acc = ((np.sum(y_train == y_train_pred)).astype(np.float) /
X_train.shape[0])
valid_acc = ((np.sum(y_valid == y_valid_pred)).astype(np.float) /
X_valid.shape[0])
sys.stderr.write('\r%0*d/%d | Cost: %.2f '
'| Train/Valid Acc.: %.2f%%/%.2f%% ' %
(epoch_strlen, i+1, epochs, cost,
train_acc*100, valid_acc*100))
sys.stderr.flush()
eval_['cost'].append(cost)
eval_['train_acc'].append(train_acc)
eval_['valid_acc'].append(valid_acc)
return eval_
epochs = 10
eval_ = fit(X_train=X_train[:55000],
y_train=y_train[:55000],
X_valid=X_train[55000:],
y_valid=y_train[55000:], epochs=epochs)
X train shape: (55000, 784)
y train shape: (55000,)
X test shape: (5000, 784)
y test shape: (5000,)
Number of outputs: 10
Number of outputs: 784
Bias input -> hidden: (30,)
Weights input -> hidden: (784, 30)
Bias hidden -> output: (10,)
Weights hidden -> output: (30, 10)
Y train: (55000,)
Y train encoding: (55000, 10)
10/10 | Cost: 31420.29 | Train/Valid Acc.: 91.69%/93.38%
import matplotlib.pyplot as plt
plt.plot(range(epochs), eval_['cost'])
plt.ylabel('Cost')
plt.xlabel('Epochs')
#plt.savefig('images/12_07.png', dpi=300)
plt.show()
plt.plot(range(epochs), eval_['train_acc'],
label='Training')
plt.plot(range(epochs), eval_['valid_acc'],
label='Validation', linestyle='--')
plt.ylabel('Accuracy')
plt.xlabel('Epochs')
plt.legend(loc='lower right')
#plt.savefig('images/12_08.png', dpi=300)
plt.show()